UNIT 1
Integers, Fractions & Order of Operations

In this unit I will learn...

<table>
<thead>
<tr>
<th>In this unit I will learn...</th>
<th>Date:</th>
<th>I have finished this work!</th>
<th>I can do this on the test!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations with positive and negative numbers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The order of operations (BEDMAS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The parts of a fraction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Converting between mixed & improper fractions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>How to make equivalent fractions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adding & subtracting fractions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiplying & dividing fractions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order of operations with fractions</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assessments

<table>
<thead>
<tr>
<th>Assessments</th>
<th>Date:</th>
<th>Out of:</th>
<th>My mark:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment: Integers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quiz: Integers & Fractions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit Test</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Key Words

<table>
<thead>
<tr>
<th>Term</th>
<th>In other words…</th>
<th>This looks like…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quotient</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order of operations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numerator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denominator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Improper Fraction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equivalent</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Number Line
We can use the number line to illustrate the _______________ and _______________ of positive and negative numbers.
Whole numbers that can be positive or negative are called ____________________.

Ex.
\[-5 + 10\]

Ex.
\[3 - (-4)\]
Operations with Integers – Addition & Subtraction

When adding or subtracting integers follow these tips:

1. Watch your _________________.
2. Subtracting a negative is the same as _________________ Ex.
3. Adding a negative is the same as _________________ Ex.

Practice - Addition

1. Use a number line to model each sum.
 a) $-3 + 5$
 b) $-4 + 2$
 c) $5 + (-4)$
 d) $4 + (-6)$

2. Use a number line to model each sum.
 a) $-1 + (-3)$
 b) $-2 + 2$
 c) $3 + (-3)$
 d) $0 + (-5)$

3. Find each sum.
 a) $5 + (-7)$
 b) $-3 + 6$
 c) $-3 + 2$
 d) $-5 + (-2)$

4. Find each sum.
 a) $-5 + 5$
 b) $6 + (-6)$
 c) $0 + (-3)$
 d) $-8 + 0$

5. Find each sum.
 a) $-6 + (-4)$
 b) $3 + (-1)$
 c) $4 + (-5)$
 d) $0 + (-2)$

6. Find each sum.
 a) $-4 + (-5) + 3$
 b) $6 + (-3) + 3$
 c) $3 + (-2) + (-4)$
 d) $-5 + 4 + (-3)$

7. Find each sum.
 a) $-2 + 6 + (-3)$
 b) $-5 + (-4) + (-3)$
 c) $3 + (-8) + 7$
 d) $4 + (-12) + 3$

8. Find each sum.
 a) $-3 + 2 + (-4) + 1$
 b) $6 + (-2) + (-5) + 3$
 c) $-8 + 4 + (-5) + (-3)$
 d) $5 + (-7) + 3 + (-9)$

9. Find each sum.
 a) $9 + (-5) + (-1) + 4$
 b) $-2 + 6 + (-3) + (-7)$
 c) $6 + (-8) + 4 + (-3)$
 d) $-2 + 1 + (-9) + 8$

10. The temperature in Stratford starts at $-5^\circ C$, rises $18^\circ C$, and then falls $8^\circ C$. What is the final temperature?

11. On Monday the price of a company’s stock is $35 per share. On Tuesday the price drops $4, on Wednesday it rises $7, on Thursday it drops $6, and on Friday it rises $7. What was the price of the stock per share at the end of the week?
Practice – Subtraction

1. Subtract.
 a) \(7 - 5 \)
 b) \(6 - 8 \)
 c) \(4 - (-3) \)
 d) \(5 - (-2) \)

2. Subtract.
 a) \(4 - 4 \)
 b) \((-5) - (-5) \)
 c) \(0 - 9 \)
 d) \(0 - (-6) \)

 a) \(0 - 4 \)
 b) \(0 - (-8) \)
 c) \(-8 - 2 \)
 d) \(-5 - 3 \)

4. Subtract.
 a) \(-3 - (-8) \)
 b) \(-4 - (-2) \)
 c) \(-6 - (-6) \)
 d) \(-7 - 0 \)

5. Copy each question and fill in the blank with the correct integer.
 a) \(-4 - \square = -7 \)
 b) \(\square - 5 = 4 \)
 c) \(0 - \square = -7 \)

6. Copy each equation and fill in the blank with the correct integer.
 a) \(\square - (-3) = 5 \)
 b) \(0 - \square = 3 \)
 c) \(6 - \square = -2 \)

7. Evaluate.
 a) \(10 - 8 - 5 \)
 b) \(2 - 9 - (-1) \)
 c) \(-3 - (-4) - 11 \)
 d) \(-15 - (-5) - (-7) \)

8. Evaluate.
 a) \(16 - 12 - 5 \)
 b) \(5 - 12 - (-4) \)
 c) \(-4 - (-2) - 8 \)
 d) \(-18 - (-3) - (-13) \)

9. Which expressions have the same result?
 a) \(9 - 4 \)
 b) \(-5 - (-2) \)
 c) \(-8 - (-3) \)
 d) \(-2 - (-7) \)
 e) \(-8 - (-5) \)
 f) \(-9 - (-4) \)

10. The average low temperature in Tobermory in October is 5°C. In February it is 23°C lower. What is the average low temperature in Tobermory in February?

11. The air temperature is \(-8^\circ\text{C}\). With the wind blowing at a speed of 18 km/h, this temperature feels like \(-15^\circ\text{C}\). How many degrees does the temperature change because of the wind chill?
A scuba diver swam... down 25 feet then down 10 feet then up 5 feet then down 50 feet then up 65 feet then down 45 feet Where did he end up?

INTEGER
(positive and negative whole numbers &)
operations

Adding

Same Sign
Think: Adding two descents together goes even deeper. Adding two ascents together is rising even higher.

pos + pos = pos
neg + neg = neg

Same Sign Examples:
5 + 8 = 13
(-2) + (-3) = -5

Different Sign
Think: An ascent can partially cancel out or overcome a descent, or...

Use the sign of the number with the absolute values.

Examples:
5 + (-8) = -3
(-2) - 3 = -5

Remember:
Another great analogy for understanding integers is money. Think about adding and removing (subtracting) credits and debts. Example: Removing a debt is a positive movement!

Subtracting

Rewrite
Think: Removing a recent descent is actually rising again, removing a recent ascent is the same as descending again.

5 - (-8) = 13
(-2) - 3 = -5

Rewrite Examples:

PRACTICE WITH INTEGER OPERATIONS
Simplify each expression.

Multiply or divide normally, but...

if both signs match, the answer will be

example: \((-4) \div 2 = \) rewrite

if they don’t it will be

examples: \((-4) \div 2 = \) rewrite

Think:
Multiple descents of the same depth work like repeated adding of those negative movements.
Ex: 3 descents of 6 meters each can be written:

\(3 \cdot (-6) \) or \((-6)+(-6)+(-6)\)

Example 1
\((-4) + (-16) =\)

Example 2
\(9 + (-12) =\)

Example 3
\((-24) \div (-3) =\)

Example 4
\(15 \cdot (-3) =\)

Example 5
\((-17) - 21\) rewrite

Example 6
\(4 - (-30)\) rewrite

Example 7
\((-35) - (-40)\) rewrite

CHALLENGE

\(3 + (-5) + 8 =\)

\((-2) + (-5) + (-4) =\)

\((-4)(5)(-1)(3) =\)

\(4 \cdot (-2)(-3)(-5) \cdot 2 =\)

Alicia withdrew 45 dollars from her bank account. Later that day, she deposited $80, then wrote a check for $250. Last, she spent another $35 from the account while shopping with her debit card. What was her total gain or loss in funds from the account that day? Write an integer expression, then simplify.

Name:

NOTE:

When multiplying or dividing 3 or more integers, if the number of negatives is ODD, the product is negative. If it is EVEN, the product is positive.
Operations with Integers – Multiplication & Division

We can multiply or divide integers by following these two steps:

1. Multiply or divide the numbers, ignoring the ________________.

2. Decide whether the answer is positive or negative by looking at the signs used.
 a. An ________________ number of negative signs will cancel out, leaving a positive.
 b. An ________________ number of negative signs will leave one behind, making a negative.

Ex. \((-4)(2)(-5)\)
Ex. \(24 ÷ (-6)\)

Practice – Multiply & Divide

1. Find each product.
 a) \(5 \times 7\)
 b) \(4 \times (-3)\)
 c) \((-3) \times 6\)
 d) \((-2) \times (-8)\)

2. Find each product.
 a) \(0(9)\)
 b) \((-4)(7)\)
 c) \(6(-7)\)
 d) \((-6)(-8)\)

3. Find each quotient.
 a) \(18 ÷ 6\)
 b) \(12 ÷ (-3)\)
 c) \((-16) ÷ 2\)
 d) \((-15) ÷ (-5)\)

4. Find each quotient.
 a) \(\frac{0}{-4}\)
 b) \(\frac{35}{-7}\)
 c) \(\frac{-24}{6}\)
 d) \(\frac{-28}{-4}\)

 a) \((-3) \times (-5) \times (-4)\)
 b) \((-6) \times 2 \times (-4)\)
 c) \(4 \times (-3) \times (-2)\)

7. List all integers that divide evenly into each.
 a) 18
 b) -15

8. List all integers that divide evenly into each.
 a) 24
 b) -30

9. Write a multiplication expression and a division expression that would have each result.
 a) -8
 b) -15

10. Determine how each multiplication or division pattern is formed. Then, write the next two numbers.
 a) 1, 4, 16, ...
 b) -400, -200, -100, ...
Operations with Integers – The Order of Operations
When simplifying an ______________with more than one ______________we follow a specific order for our work.
Remember…

B

E

D

M

A

S

Practice – Order of Operations
1. Evaluate.
 a) $3^2 + 2(3+1)^2$
 b) $2^3 - 3(4 - 2)^2$
 c) $5 + 4(9 - 3 \times 2)$
 d) $7 - 3(8 - 2^2 \times 1)$

2. Evaluate.
 a) $5 + 3 \times (2^4 - 2^3)$
 b) $9 - 2^2 \times 3(4 - 6)$
 c) $5(4^2 - 3^2) + 8$
 d) $6[11 - (3 + 1)^2 + 3]$

3. Evaluate.
 a) $(15 + 3) + (10 - 2^3)$
 b) $4 \times 3(24 + 2^2) + 5$
 c) $(5^2 - 3^2) + 4 + 8 \times 2$
 d) $6[4^3 + (3 + 1)^2 - 3]$

4. Evaluate.
 a) $5(-4) + (-4)^2$
 b) $-20 + (-4) - 3$
 c) $(-3)(-4) + (1 - 3)^2$
 d) $(1 - 5)^2 + (1 - 3)$

6. Evaluate.
 a) $5 - 2 \times 3.1 + 4.2$
 b) $(2.5 + 3^2) - 1.6$
 c) $0.2(11 - 7) + (0.4)^2$
 d) $2(0.7 + 0.2)^2 + 4.6$

7. Evaluate.
 a) $3.2 + 0.5 \times 3 - 4$
 b) $(2^2 + 4.3) - 1.2 \times 2$
 c) $(0.5)^2 + 0.4(9 - 5)$
 d) $8.2 + 2(1 + 2)^2$

8. Insert brackets to make each equation true.
 a) $16 + 4 - 5 \times 2^2 = -4$
 b) $16 + 4 - 5 \times 2^2 = -16$
 c) $16 + 4 - 5 \times 2^2 = -64$

9. Copy each equation and use the symbols $+, -, \times, \div$, and $()$ to make it true.
 a) $4 \square 2 \square 3 = -2$
 b) $20 \square 5 \square 9 = -5$
 c) $-12 \square 3 \square -6 = 2$
 d) $10 \square 3 \square -2 = -14$
A fraction represents \(\frac{4}{7} \).

In a proper fraction, \(\frac{_}{_} < \frac{_}{_} \).

In an improper fraction, \(\frac{_}{_} < \frac{_}{_} \).

(Shade/color below to show the fraction \(\frac{4}{7} \).)

Simplifying

To simplify a fraction, divide the \(\frac{16}{20} \) and \(\frac{_}{_} \) by \(\frac{_}{_} \).

(Shade/color to show that the simplest form is equivalent to the original.)

\[\frac{16}{20} = \frac{_}{_} \]

Equivalent

To write an equivalent fraction...

\[\frac{6}{9} = \frac{_}{_} = \frac{_}{_} = \frac{_}{_} = \frac{_}{_} = \frac{_}{_} = \frac{_}{_} \]

(Use GCF)

(Go back to the top and draw a dividing line on the grid for \(\frac{4}{7} \) to show an equivalent fraction. Write the fraction here: ____)

Try It

For each fraction, write the simplest form plus one additional equivalent fraction.

\[
\begin{align*}
\frac{8}{20} &= \frac{_}{_} = \frac{_}{_} \\
\frac{6}{18} &= \frac{_}{_} \\
\frac{7}{21} &= \frac{_}{_} \\
\frac{10}{12} &= \frac{_}{_}
\end{align*}
\]

Name:
Operations with Fractions – Adding & Subtracting Fractions

Choosing a Common Denominator

1. Examine the denominators you are working with.
 What ________________ do they have?

2. Choose the smallest number that uses these factors.
 This will be a number that all denominators could divide evenly into.

3. Make ______________________________ using this new denominator.

Once you have common denominators, add or subtract the ________________

Ex. \(\frac{3}{5} + \frac{4}{7} = \)

Ex. \(\frac{2}{3} - \frac{1}{15} \)

Ex. \(-3 \frac{2}{5} + \frac{1}{3} \)
Practice – Adding & Subtracting Fractions

Always leave answers in lowest terms.

1. Find each sum or difference. Express your answers in lowest terms.
 a) $\frac{3}{7} + \frac{4}{7}$
 b) $\frac{5}{6} + \frac{4}{6}$
 c) $\frac{4}{5} + \frac{1}{5}$
 d) $\frac{7}{8} - \frac{5}{8}$

2. Find each sum.
 a) $\frac{5}{8} + \frac{1}{4}$
 b) $\frac{7}{12} + \frac{5}{6}$
 c) $\frac{5}{14} + \frac{3}{7}$

3. Find each sum.
 a) $\frac{3}{4} + \frac{5}{6}$
 b) $\frac{3}{4} + \frac{2}{5}$
 c) $\frac{2}{3} + \frac{2}{7}$

4. Find each difference.
 a) $\frac{5}{6} - \frac{2}{3}$
 b) $\frac{5}{14} - \frac{1}{7}$
 c) $\frac{7}{10} - \frac{2}{5}$

5. Find each difference.
 a) $\frac{5}{6} - \frac{2}{5}$
 b) $\frac{5}{7} - \frac{1}{3}$
 c) $\frac{7}{9} - \frac{1}{4}$

6. Find each difference.
 a) $\frac{4}{5} - \frac{3}{2} - \frac{2}{3}$
 b) $\frac{5}{4} - \frac{3}{1} - \frac{1}{6}$
 c) $\frac{2}{7} - \frac{1}{4} - \frac{4}{5}$

7. During one week, Diwani studied for $\frac{3}{2}$ h on Monday, $\frac{2}{3}$ h on Tuesday, and $\frac{2}{5}$ h on Wednesday.
 a) Find the total number of hours that Diwani studied for this week.
 b) For how much longer did she study on Monday than on Tuesday?
 c) For how much longer did she study on Wednesday than on Tuesday?
Operations with Fractions – Multiplying
When multiplying fractions we do not need _______________________________.
We multiply the numerators together and the denominators together.

Ex. \(\left(\frac{3}{4} \right) \left(\frac{5}{6} \right) \)

NOTE: Answers are written in lowest terms

Hint: We can __________________ before we multiply to get to lowest terms in our answer.

Ex. \(\left(\frac{3}{4} \right) \left(\frac{5}{6} \right) \)

Operations with Fractions – Dividing
When dividing fractions we can simplify if we see the question as _______________________.

We do this by making two changes:
1. Change the ________________________ (from division to multiplication)
2. At the same time change the fraction you are dividing by two its _____________________.

Then we can multiply like before.

Ex. \(\frac{3}{4} \div \frac{5}{6} \)

Ex. \(\frac{-3}{5} \div \frac{3}{8} \)

Ex. \(\left(\frac{2}{6} \right) \left(\frac{5}{2} \right) \)

Ex. \(4\frac{1}{4} \div \left(\frac{6}{7} \right) \)
A whole number can always be written as a fraction. Put it over 1.

Multiplying fractions

Two fractions

\[
\frac{4}{5} \times \frac{3}{8}
\]

Show the cancellations that allow the problem to be rewritten as follows:

\[
\frac{1}{5} \times \frac{3}{2}
\]

Finish it up. What if you had not cancelled?

Answers

All answers must be in simplest form and converted from improper fractions to mixed numbers if necessary.

Canceling

To “cancel,” divide a number within a fraction and a number within a fraction by their _____ (greatest common factor)
Fraction Multiplication:
Sometimes, multiplication can be represented by the word “___.”
Color the models using two colors to represent each problem.

Concepts

What is $\frac{3}{4} \times 2$?
Rewrite as a problem with two fractions, then solve.

Visual Models

Two copies of a model for $\frac{3}{4}$

What is $\frac{1}{2}$ of $\frac{1}{4}$?
Write as a multiplication problem, then solve.

The model represents $\frac{1}{2} \times \frac{1}{4}$

Multiplying Mixed Numbers

Convert into _______ first, then ...

A ___ can replace the \times to symbolize multiplication.

Name:
Examples and Practice

Fraction & whole numbers:
\[
\frac{3}{5} \cdot 6
\]

Multiplying fractions:

2-fractions:
\[
\frac{5}{8} \cdot \frac{3}{4}
\]

Cancel first:
\[
\frac{16}{21} \cdot \frac{7}{12}
\]

3-fractions:
\[
\frac{2}{15} \cdot \frac{9}{14} \cdot \frac{5}{7}
\]

Mixed numbers:
\[
4 \frac{6}{7} \cdot 1 \frac{1}{2}
\]

Tips:
- Put whole numbers over
- Simplify and/or cancel
- Rewrite mixed numbers as
- Then convert back when you have an answer if needed.

Try it:

Complete each problem, showing all work.

1. \[
\frac{3}{8} \cdot \frac{2}{3}
\]

2. \[
\frac{3}{5} \cdot \frac{15}{24}
\]

3. \[
\frac{4}{12} \cdot \frac{1}{8} \cdot \frac{9}{10}
\]

4. \[
\frac{2}{7} \cdot \frac{1}{4}
\]

5. \[
\frac{6}{8} \cdot \frac{9}{9}
\]

6. \[
\frac{125}{48} \cdot \frac{36}{50}
\]
STEP 1

The operation switch and reciprocal MUST happen simultaneously (together).

Example

\[
\frac{3}{4} \div \frac{7}{2}
\]

Think about it: TRY \(\frac{1}{4} \div \frac{1}{2} \)

We can rewrite it by converting to multiplying by the reciprocal of the 2nd fraction.

\[
\frac{3}{4} \times \frac{1}{2}
\]

So instead of dividing \(\frac{1}{4} \) by 2, we can take HALF OF it by multiplying by its reciprocal.

Rewrite

\[
\frac{3}{4}
\]

dividing fractions

So to divide by \(\frac{7}{2} \), we can just

\[
\frac{3}{4} \times \frac{2}{7}
\]

Then ...

Multiply normally (straight across the numerator and denominator)

Multiply normally (straight across the numerator and denominator)

Cancel

\[
\frac{3 \times 2}{4 \times 7}
\]

Finish it up!

Simplify answers when necessary.

Name: [blank]

© Copyright 2016 Math Giraffe
Fraction Division

Remember that division is represented by determining how many _________ a number can be divided up into. Divide up and color or shade the models to represent each problem.

Concepts

What is

Rewrite as a multiplication problem using a reciprocal, then solve.

\[\frac{1}{2} \div \frac{1}{6} \]

How many groups of \(\frac{1}{6} \) are in \(\frac{1}{2} \)?

What is

Convert the mixed number into an improper fraction, write as a multiplication problem using a reciprocal, then solve.

\[1 \frac{1}{2} \div \frac{1}{8} \]

How many groups of \(\frac{1}{8} \) are in \(1 \frac{1}{2} \)?

Answers

All answers must be in _______ and converted from improper fractions to mixed numbers if necessary.
Fraction Division Practice

Show all work. Write each answer in standard form.

Example 1
\[
\frac{2}{3} \div \frac{8}{8}
\]
Rewrite

Example 2
\[
\frac{3}{4} \div \frac{1}{8}
\]
Rewrite
Model it

Example 3
\[
\frac{9}{10} \div \frac{4}{15}
\]
Rewrite

Example 4
\[
3 \div \frac{2}{3}
\]
Rewrite
Model it
Practice – Multiplying and Dividing Fractions

Always leave answers in lowest terms.

1. Multiply.
 a) \(\frac{2}{7} \times \frac{3}{5} \)
 b) \(\frac{4}{7} \times \frac{7}{9} \)
 c) \(\frac{3}{8} \times \frac{4}{5} \)
 d) \(\frac{2}{3} \times \frac{7}{10} \)

4. Divide.
 a) \(1\frac{2}{3} \div \frac{3}{4} \)
 b) \(\frac{5}{8} \div 2\frac{1}{2} \)
 c) \(1\frac{5}{9} \div 4\frac{2}{3} \)
 d) \(\frac{2}{7} \div 4\frac{1}{3} \)

2. Multiply.
 a) \(\frac{3}{4} \times 1\frac{2}{3} \)
 b) \(2\frac{3}{5} \times \frac{1}{6} \)
 c) \(5\frac{1}{7} \times 2\frac{1}{6} \)
 d) \(3\frac{4}{5} \times 4\frac{1}{2} \)

5. A bowl filled with lollipops is \(\frac{3}{4} \) full. \(\frac{2}{3} \) of these lollipops are green. What fraction of the full bowl are the green lollipops?

6. A box of blueberries is \(\frac{2}{5} \) full. Janet and her friends had each eaten \(\frac{1}{10} \) of a box of blueberries. How many people ate blueberries?
Operations with Fractions – The Order of Operations
Multiple operations with fractions? Use the same order of operations!

Practice – Order of Operations

a) \(-\frac{5}{2} + \left(\frac{18}{5}\right)\)

b) \(4 - 2\left[5 - 2(3 - 7)\right]\)

c) \(4 - 3(-1)^2\)

d) \(\frac{5}{9} \div \left(\frac{3}{2}\right) \left(\frac{9}{3}\right)\)

e) \(\frac{4 - (-2)(-3)}{(-2)^2}\)

f) \(\frac{9}{2} \left(\frac{2}{3}\right)^2\)

g) \(\frac{66}{6} + \left(-\frac{21}{7}\right)\)

h) \(15 \div \left(\frac{3}{5}\right)\)
Key Words

Unit 1 - Integers & Fractions

New Words

ADDITION
DIVISION
INTEGER
NUMERATOR
PRODUCT
SUBTRACTION

DENOMINATOR
FRACTION
MIXED
OPERATION
QUOTIENT
SUM

DIFFERENCE
IMPROPER
MULTIPLICATION
ORDER
RECIPROCAL
Goal Setting

Unit: Integers, Fractions & Order of Operations

Name: _______________

Unit Learning Targets

<table>
<thead>
<tr>
<th>Learning Target</th>
<th>Simple Mistakes?</th>
<th>More Practice?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform operations with positive and negative numbers (addition, subtraction, multiplication, division)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Follow the order of operations (BEDMAS) showing all my work</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Know the parts of a fraction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convert between mixed & improper fractions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Make equivalent fractions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add & subtract fractions showing all my work</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiply & divide fractions showing all my work</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Follow the order of operations with fractions showing all my work</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Next Steps

Choose one of the four responses for each question below.

<table>
<thead>
<tr>
<th>Am I ready?</th>
<th>Strongly Agree</th>
<th>Kind of Agree</th>
<th>Kind of Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>I am ready to take the test today!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I would like some more practice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I would like some one-on-one time to ask questions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Take a look at the comments made on the front and form written responses to the ideas below.

My Strengths (Targets I got right):

My Areas for Growth:

My Learning Goal:

Strategies or activities I can do to address my goal: